Bước tới nội dung

Tủ sách/Sách công thức/Sách công thức Toán

Tủ sách mở Wikibooks

Số học

[sửa]

Đại số

[sửa]

Phép toán Số nguyên

[sửa]
Số nguyên   


Toán Số nguyên Công thức
Cộng trừ nhân chia số nguyên với số không




Cộng trừ nhân chia số nguyên dương với số nguyên âm




Cộng trừ nhân chia số nguyên dương với số nguyên dương




Lũy thừa số nguyên



. . Với

Căn số nguyên



Phép toán Lũy thừa

[sửa]

Toán lủy thừa Công thức
Lủy thừa không
Lủy thừa 1
Lủy thừa của số không
Lủy thừa của số 1
Lủy thừa trừ
Lủy thừa phân số
Lủy thừa của số nguyên âm


Với .
. Với

Lủy thừa của số nguyên dương
Lủy thừa của lủy thừa
Lủy thừa của tích hai số
Lủy thừa của thương hai số
Lủy thừa của căn
Cộng trừ nhân chia 2 lủy thừa






Lủy thừa của tổng hai số






Lủy thừa của hiệu hai số






Hiệu 2 lũy thừa
Tổng 2 lũy thừa

Phép toán Toán căn

[sửa]
 khi có 
Toán căn số Công thức
Căn và lủy thừa
Căn của số nguyên




Căn lủy thừa


Căn thương số



Căn tích số


=

Vô căn


Ra căn


Phép toán Toán log

[sửa]
khi có
Toán Log Công thức
Viết tắc

Log 1
Log lũy thừa
Lũy thừa log
Log của tích số
Log của thương số
Log của lủy thừa
Đổi nền log

Phép toán Toán số phức

[sửa]

Số phức được biểu diển như ở dưới đây

Số phức Thuận Nghịch
Biểu diển dưới dạng xy
Biểu diển dưới dạng Zθ
Biểu diển dưới dạng hàm số lượng giác
Biểu diển dưới lũy thừa của e

Toán số phức được thực thi như sau

Toán Số phức Toán cộng Toán trừ Toán nhân Toán chia

Định lý Demoive

Giải tích

[sửa]

Hình học

[sửa]

Tam giác vuông Pythagore

[sửa]

Vector các cạnh

. Vector cạnh ngang
. Vector cạnh dọc
. Vector cạnh nghiêng

Tương quan góc và cạnh

Đường dài các cạnh

Góc độ nghiêng

Hàm số đương thẳng nghiêng

Die^.n tích dưới hình

Với

Lượng giác

[sửa]

Góc

[sửa]

Khi hai đường thẳng cắt nhau tại một điểm sẽ tạo ra một góc giữa hai đường thẳng . Góc có ký hiệu . Thí dụ 2 đường thẳng AB và AC cắt nhau tại một điểm a tạo ra góc A :

Góc đo bằng đơn vị Độ o hay Radian Rad

Thí dụ : Góc A bằng 30o

Bảng liệt kê các loại góc

Thể loại góc Hình Định nghỉa
Góc nhọn Góc nhọn là góc nhỏ hơn 90°
Góc vuông Góc vuông là góc bằng 90° (1/4 vòng tròn);
Góc tù Góc tù là góc lớn hơn 90° nhưng nhỏ hơn 180°
Góc bẹt Góc bẹt là góc 180° (1/2 vòng tròn).
Góc phản Góc phản là góc lớn hơn 180° nhưng nhỏ hơn 360°
Góc đầy Góc đầy là góc bằng 360° (toàn bộ vòng tròn).

Hàm số lượng giác

[sửa]

6 Công thức hàm số lượng giác cơ bản định nghỉa tương quan giửa các cạnh và góc trong tam giác vuông

Hàm số lượng giác cơ bản

Tam giác vuông







Đồ thị






Tính chất Tuần hoàn, đối xứng và tịnh tiến

[sửa]

Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:

Tuần hoàn Đối xứng Tịnh tiến

Hàm số góc bội

[sửa]
  • Bội hai

Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2.

Công thức gíc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a2 − b2, 2ab, c2) cũng vậy.

  • Bội ba

Ví dụ của trường hợp n = 3:


  • Tổng quát

Nếu Tn là đa thức Chebyshev bậc n thì

công thức de Moivre:

Hàm hạt nhân Dirichlet Dn(x) sẽ xuất hiện trong các công thức sau:

Hay theo công thức hồi quy:

=

Hàm số góc chia đôi

[sửa]


Từ trên , Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa:

Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa:

Suy ra:

Nếu

thì:

      and     and  
Công thức tổng của 2 góc
[sửa]
Công thức hiệu của 2 góc
[sửa]
Công thức tích 2 góc
[sửa]
Công thức lũy thừa của góc
[sửa]

Hàm số lượng giác nghịch

[sửa]

Định nghỉa

[sửa]

6 Công thức hàm số lượng giác cơ bản định nghỉa tương quan giửa các cạnh và góc trong tam giác vuông

Hàm số lượng giác cơ bản

Tam giác vuông







Đồ thị






Tính chất

[sửa]
Chuổi Số
[sửa]

Các hàm lượng giác nghịch đảo cũng có thể được định nghĩa bằng chuỗi vô hạn:

Tích Phân
[sửa]

Chúng cũng có thể được định nghĩa thông qua các biểu thức sau, dựa vào tính chất chúng là đạo hàm của các hàm khác.

Số Phức
[sửa]

Công thức trên cho phép mở rộng hàm lượng giác nghịch đảo ra cho các biến số phức|phức: