Sách công thức/Sách công thức Toán/Sách công thức ma trận
Ma trận
[sửa]Trong toán học, ma trận là một mảng chữ nhật– các số, ký hiệu, hoặc biểu thức, sắp xếp theo hàng và cột – mà mỗi ma trận tuân theo những quy tắc định trước. Từng ô trong ma trận được gọi là các phần tử hoặc mục. Ví dụ một ma trận có 2 hàng và 3 cột.
Ký hiệu
[sửa]Ma trận thường được viết trong dấu ngoặc vuông:
Một cách ký hiệu khác là sử dụng dấu ngoặc đơn lớn thay cho dấu ngoặc vuông:
Kích thước
[sửa]Kích thước hay cỡ của ma trận được định nghĩa bằng số lượng hàng và cột. Một ma trận m hàng và n cột được gọi là ma trận m × n hoặc ma trận m-nhân-n, trong khi m và n được gọi là chiều của nó. Ví dụ, ma trận A ở trên là ma trận 3 × 2.
Ma trận chỉ có một hàng gọi là vectơ hàng, ma trận chỉ có một cột gọi là vectơ cột. Ma trận có cùng số hàng và số cột được gọi là ma trận vuông. Ma trận có vô hạn số hàng hoặc số cột (hoặc cả hai) được gọi là ma trận vô hạn. Trong một số trường hợp, như chương trình đại số máy tính, sẽ có ích khi xét một ma trận mà không có hàng hoặc không có cột, goi là ma trận rỗng.
Tên gọi Độ lớn Ví dụ Miêu tả Vectơ hàng 1 × n Ma trận có một hàng, được dùng để biểu diễn một vectơ Vectơ cột n × 1 Ma trận có một cột, được dùng để biểu diễn một vectơ Ma trận vuông n × n Ma trận có cùng số hàng và số cột, nó được sử dụng để biểu diễn phép biến đổi tuyến tính từ một không gian vec tơ vào chính nó, như phép phản xạ, phép quay hoặc ánh xạ cắt.
Loại ma trận
[sửa]Ma trận con
[sửa]Ma trận con của một ma trận nhận được bằng cách xóa bất kỳ các hàng và các cột.<ref>Ma trận con được ký hiệu là Mij với i là dòng bị xóa, j là cột bị xóa. Ví dụ, từ ma trận 3 x 4, chúng ta có thể tạo ra ma trận con 2x3 bằng cách xóa hàng 3 và cột 2:
Định thức con và phần phụ đại số của ma trận tìm được bằng cách tính định thức của những ma trận con nhất định.
Ma trận con chính là một ma trận con vuông thu được bằng cách xóa đi một số hàng và cột. Mỗi tác giả có một cách định nghĩa khác nhau. Theo một số tác giả, ma trận con chính là một ma trận con mà tập chỉ số hàng còn lại bằng tập chỉ số cột còn lại. Một số tác giả khác định nghĩa ma trận con chính là một trong những ma trận con có k hàng và cột đầu tiên, đối với một số giá trị k, là những ma trận còn lại sau khi xóa hàng hoặc/và cột; loại ma trận con này còn được gọi là ma trận con chính trước (leading principal submatrix).
Các phép toán cơ bản
[sửa]Có một số phép toán cơ bản tác dụng lên ma trận, bao gồm cộng ma trận, nhân một số với ma trận, chuyển vị, nhân hai ma trận, phép toán hàng, và ma trận con.
Phép toán Định nghĩa Ví dụ Cộng hai ma trận Tổng A+B của hai ma trận cùng kích thước m-x-n A và B được một ma trận cùng kích thước với phần tử trong vị trí tương ứng bằng tổng của hai phần tử tương ứng của mỗi ma trận: - (A + B)i,j = Ai,j + Bi,j, với 1 ≤ i ≤ m và 1 ≤ j ≤ n.
Nhân (vô hướng) một số với ma trận Tích cA của số c (cũng được gọi là vô hướng trong đại số trừu tượng) với ma trận A được thực hiện bằng cách nhân mỗi phần tử của A với c: - (cA)i,j = c • Ai,j.
Phép toán này được gọi là nhân vô hướng, nhưng không nên nhầm lẫn với khái niệm "tích vô hướng" hay "tích trong".
Chuyển vị Chuyển vị của ma trận m-x-n A là ma trận n-x-m AT (cũng còn ký hiệu là Atr hay tA) tạo ra bằng cách chuyển hàng thành cột và cột thành hàng: - (AT)i,j = Aj,i.
Cộgn 2 ma trận
[sửa]- A + B = B + A.
- (A + B) + C = A + (B + C)
Chuyển vị
[sửa]Phép chuyển vị có thể kết hợp với phép nhân vô hướng, cộng ma trận và nhân ma trận.
- (cA)T = c(AT)
- (A + B)T = AT + BT
- (AT)T = A
- (AB)T=BTAT
Nhân ma trận
[sửa]Phép nhân hai ma trận được xác định khi và chỉ khi số cột của ma trận bên trái bằng số hàng của ma trận bên phải. Nếu A là một ma trận m-x-n và B là một ma trận n-x-p, thì ma trận tích AB là ma trận m-x-p với các phần tử được xác định theo tích vô hướng của hàng tương ứng trong A với cột tương ứng trong B:
- ,
với 1 ≤ i ≤ m và 1 ≤ j ≤ p. Ví dụ, phần tử gạch chân bên dưới 2340 trong tích được xác định bằng (2 × 1000) + (3 × 100) + (4 × 10) = 2340:
Phép nhân ma trận thỏa mãn quy tắc (AB)C = A(BC) (tính chất kết hợp), và (A+B)C = AC+BC cũng như C(A+B) = CA+CB (luật phân phối trái và phải), khi kích thước của các ma trận tham gia vào phép nhân thỏa mãn yêu cầu của tích hai ma trận. Tích AB có thể xác định trong khi BA không nhất thiết phải xác định, tức là nếu A và B lần lượt có số chiều m-x-n và n-x-k, và m ≠ k. Thậm chí khi cả hai tích này đều tồn tại thì chúng không nhất thiết phải bằng nhau, tức là
- AB ≠ BA,
hay phép nhân ma trận không có tính giao hoán, một đặc điểm khác với các trường số (hữu tỉ, thực, hay phức) mà tích của các số không phụ thuộc vào thứ tự của các số thực hiện trong phép nhân. Ví dụ về nhân hai ma trận không có tính giao hoán:
trong khi
Bên cạnh phép nhân ma trận thông thường như đã miêu tả, có một số phép toán tác dụng lên ma trận ít gặp mà có thể coi như là phép nhân ma trận, ví dụ như tích Hadamard và tích Kronecker.Chúng xuất hiện khi giải phương trình ma trận, như phương trình Sylvester.
Phép toán hàng
[sửa]Có ba loại phép toán hàng:
- cộng hàng, tức là cộng các hàng lại với nhau.
- nhân hàng, tức là nhân mọi phần tử trong hàng với một hằng số khác 0;
- chuyển hàng, thay đổi vị trí hai hàng cho nhau trong ma trận;
Các phép toán này được áp dụng trong một số lĩnh vực, bao gồm giải phương trình tuyến tính và tìm ma trận ngược.