Nhập môn Lượng giác/Hàm lượng giác cơ bản/Vòng tròn một đơn vị

Tủ sách mở Wikibooks

Khái Niệm[sửa]

Các hàm lượng giác cũng có thể được định nghĩa bằng vòng tròn đơn vị, một vòng tròn có bán kính bằng 1 và tâm trùng với tâm của hệ tọa độ. Định nghĩa dùng vòng tròn đơn vị thực ra cũng dựa vào tam giác vuông, nhưng chúng có thể định nghĩa cho các mọi góc là số thực, chứ không chỉ giới hạn giữa 0 và Pi/2 radian. Các góc lớn hơn 2π hay nhỏ hơn −2π quay vòng trên đường tròn.

Dùng đại số[sửa]

Vòng tròn đơn vị là mọi điểm (x, y) trên mặt phẳng của hình học phẳng thỏa mãn:

x2 + y2 = 1

Gọi góc θ là góc giữa đường thẳng nối tâm hệ tọa độ và điểm (x,y) trên vòng tròn và chiều dương của trục x của hệ tọa độ x-y, các hàm lượng giác có thể được định nghĩa là:

Hàm Định nghĩa
sin(θ) y
cos(θ) x
tan(θ) y/x
cot(θ) x/y
sec(θ) 1/x
csc(θ) 1/y

Khi các góc quay trên vòng tròn, hàm sin, cos, sec và cosec trở nên hàm tuần hoàn với chu kỳ 2π radian hay 360 độ:

Ở đây θ là góc, một số thực bất kỳ; k là một số nguyên bất kỳ.

Tang và Cotang tuần hoàn với chu kỳ π radian hay 180 độ.

Vòng Tròn Một Đơn Vị ở một số góc[sửa]

Hình:Unit_circle_angles.svg|500px|Vòng tròn đơn vị và một số điểm đặc biệt ứng với một số góc đặc biệt.

Phương pháp tính[sửa]

Việc tính giá trị số cho các hàm lượng giác là bài toán phức tạp. Ngày nay, đa số mọi người có thể dùng máy tính hay máy tính bỏ túi khoa học để tính giá trị các hàm này. Dưới đây trình bày việc dùng bảng tính trong lịch sử để tra giá trị các hàm lượng giác, kỹ thuật tính ngày nay trong máy tính, và một số giá trị chính xác dễ nhớ.

Trước hết, việc tính giá trị các hàm lượng giác chỉ cần tập trung vào các góc nằm, ví dụ, từ 0 đến π/2, vì giá trị của các hàm lượng giác ở các góc khác đều có thể được suy ra bằng tính chất tuần hoàn và đối xứng của các hàm.

Trước khi có máy tính, người ta thường tìm giá trị hàm lượng giác bằng cách nội suy từ một bảng tính sẵn, có độ chính xác tới nhiều chữ số thập phân. Các bảng tính này thường được xây dựng bằng cách sử dụng các công thức lượng giác, như công thức chia đôi góc, hay công thức cộng góc, bắt đầu từ một vài giá trị chính xác (như sin(π/2)=1).

Các máy tính hiện đại dùng nhiều kỹ thuật khác nhau (Kantabutra, 1996). Một phương pháp phổ biến, đặc biệt cho các máy tính có các bộ tính số thập phân, là kết hợp xấp xỉ đa thức (ví dụ chuỗi Taylor hữu hạn hoặc hàm hữu tỷ) với các bảng tính sẵn — đầu tiên, máy tính tìm đến giá trị tính sẵn trong bảng nhỏ cho góc nằm gần góc cần tính nhất, rồi dùng đa thức để sửa giá trị trong bảng về giá trị chính xác hơn. Trên các phần cứng không có bộ số học và lô gíc, có thể dùng thuật toán CORDIC (hoặc các kỹ thuật tương tự) để tính hiệu quả hơn, vì thuật toán này chỉ dùng toán tử chuyển vị và phép cộng. Các phương pháp này đều thường được lắp sẵn trong các phần cứng máy tính để tăng tốc độ xử lý.

Đối với các góc đặc biệt, giá trị các hàm lượng giác có thể được tính bằng giấy và bút dựa vào định lý Pytago. Ví dụ như sin, cos và tang của các góc là bội của π/60 radian (3 độ) có thể tính được chính xác bằng giấy bút.

Một ví dụ đơn giản là tam giác vuông cân với các góc nhọn bằng π/4 radian (45 độ). Cạnh kề b bằng cạnh đối a và có thể đặt a = b = 1. Sin, cos và tang của π/4 radian (45 độ) có thể tính bằng định lý Pytago như sau:

Nên:

Một ví dụ khác là tìm giá trị hàm lượng giác của π/3 radian (60 độ) và π/6 radian (30 độ), có thể bắt đầu với tam giác đều có các cạnh bằng 1. Cả 3 góc của tam giác bằng π/3 radian (60 độ). Chia đôi tam giác này thành hai tam giác vuông có góc nhọn π/6 radian (30 độ) và π/3 radian (60 độ). Mỗi tam giác vuông có cạnh ngắn nhất là 1/2, cạnh huyền bằng 1 và cạnh còn lại bằng (√3)/2. Như vậy:

Tính chất và ứng dụng[sửa]

Hình:Theorem of cosin.svg|nhỏ|250px|Định luật sin và định luật cos có thể được chứng minh bằng việc chia đôi tam giác thành hai tam giác vuông. Các hàm lượng giác có vị trí quan trọng trong lượng giác học. Bên ngoài lượng giác học, tính hàm tuần hoàn|tuần hoàn của chúng có ích cho việc mô phỏng các chuyển động sóng như sóng điện từ hay âm thanh. Mọi tín hiệu đều có thể được phân tích thành tổng (vô hạn) của các hàm sin và cos ứng với nhiều tần số; đây là ý tưởng chủ đạo của phân tích Fourier, dùng để giải quyết các bài toán điều kiện biên và phương trình đạo hàm riêng.

Các tính chất quan trọng nhất của các hàm lượng giác trong lượng giác học được thể hiện ở ba định luật:

Định luật sin[sửa]

Định luật sin phát biểu cho bất kỳ một tam giác nào:

Có thể chứng min định luật này bằng cách chia đôi tam giác thành hai tam giác vuông, rồi dùng định nghĩa của hàm sin. (sinA)/a là nghịch đảo của đường kính đường tròn đi qua ba điểm A, BC. Định luật sin có thể dùng để tính độ dài của một cạnh khi đã biết độ dài hai cạnh còn lại của tam giác. Đây là bài toán hay gặp trong kỹ thuật tam giác, một kỹ thuật dùng để đo khoảng cách dựa vào việc đo các góc và các khoảng cách dễ đo khác.

Định luật cos[sửa]

Định luật cos là một kết quả mở rộng của định lý Pytago:

Định luật này cũng có thể được chứng minh bằng việc chia tam giác thành hai tam giác vuông. Định luật này có thể được dùng để tìm các dữ liệu chưa biết về một tam giác nếu đã biết độ lớn hai cạnh và một góc.

Nếu góc trong biểu thức không được quy ước rõ ràng, ví dụ nhỏ hơn 90°, thì sẽ có hai tam giác thỏa mãn định luật cos, ứng với hai góc C nằm trong khoảng từ 0 đến 180° cùng cho một giá trị cos C.

Định luật tang[sửa]

Định luật tang phát biểu là:


Thể loại:Lượng giác