Sách vật lý/Nhiệt độ
Nhiệt phát sinh từ nhiều nguồn như Lửa, Ánh sáng (Mặt trời, Đèn ), hay qua Cọ xát giữa hai vật (quẹt que diêm với ống quẹt tạo ra lửa). Nhiệt điện, Nhiệt điện từ, Phóng xạ vật, ... Nhiệt cho một cảm giác nóng, ấm hoặc lạnh. Nhiệt nóng có nhiệt độ cao (ví dụ như nước sôi). Nhiệt lạnh có nhiệt độ thấp (ví dụ nước đá). Các hiện tượng xảy ra trong tự nhiên khi có thay đổi nhiệt như [hậu/], Thời tiết, Mưa nắng ... . Nhiệt được ứng dụng trong nhiều lãnh vực. Các công cụ đo lường nhiệt độ như nhiệt kế. Công cụ điện nhiệt như điện trở nhiệt. Các máy điện nhiệt như máy sưởi, tủ lạnh, máy điều hòa nhiệt độ,...
Tính chất Nhiệt
[sửa]Quan sát cho thấy,
- Mọi vật đều có một nhiệt độ riêng được gọi là thân nhiệt
- Vật mỏng có màu tối hấp thụ nhiệt cao hơn vật dày có màu sáng (Quần áo mỏng màu đen mau khô hơn quần áo dày màu trắng)
- Nhiệt truyền qua vật qua 3 giai đoạn Nhiệt cảm, Nhiệt dẩn, Nhiệt phóng xạ
- Nhiệt di chuyển khi có khác biệt nhiệt độ giửa 2 vật từ nhiệt độ cao đến nhiệt độ thấp . Không có nhiệt di chuyển khi hai vật có cùng nhiệt độ
- Khi vật và nhiệt tương tác, vật sẻ thay đổi trạng thái của vật , phát ra ánh sáng thấy được , thay đổi vật lượng của vật
Nhiệt độ
[sửa]Nhiệt Độ là một khái niệm vật lý dùng để mô tả cảm nhận nhiệt của một vật khi tiếp xúc với nguồn nhiệt . Thí Dụ như buổi sáng ta cảm thấy Ấm do cơ thể hấp thụ năng lượng nhiệt từ ánh sáng mặt trời . Buổi tối ta cảm thấy Lạnh vì không có ánh sáng mặt trời . Nhiệt độ được dùng để cho biết mức độ nhiệt như sau . Nhiệt nóng có Nhiệt độ cao cho cảm giác nóng . Nhiệt ấm có Nhiệt độ trung bình cho cảm giác ấm . Nhiệt lạnh có Nhiệt độ thấp cho cảm giác lạnh
Ký hiệu và đơn vị đo lường
[sửa]Nhiệt độ là đơn vị đo lường nhiệt cho biết mức độ nhiệt có ký hiệu T đo bằng đơn vị Độ ο
Hệ thống đo lường nhiệt độ
[sửa]Nhiệt độ được đo bằng nhiệt kế. Nhiệt kế được hiệu chuẩn trong các thang nhiệt độ khác nhau mà trước đây đã sử dụng các điểm chuẩn và chất đo nhiệt khác nhau để định nghĩa. Thang đo nhiệt độ phổ biến nhất là thang đo Celsius (trước đây gọi là C, ký hiệu là °C), các thang đo Fahrenheit (ký hiệu là °F), và thang đo Kelvin (ký hiệu là K). Thang đo Kelvin chủ yếu sử dụng cho các mục đích khoa học của công ước của Hệ đơn vị quốc tế (SI).
Nhiệt Độ C
[sửa]Nhiệt độ Celcius . Độ Celsius (°C hay độ C) là đơn vị đo nhiệt độ được đặt tên theo nhà thiên văn học người Thụy Điển Anders Celsius (1701–1744). Ông là người đầu tiên đề ra hệ thống đo nhiệt độ căn cứ theo trạng thái của nước với 100 độ C (212 độ Fahrenheit) là nước đông đá và 0 độ C (32 độ Fahrenheit) là nước sôi ở khí áp tiêu biểu (standard atmosphere) vào năm 1742.
Nhiệt Độ F
[sửa]Nhiệt độ Farenheit . Độ Fahrenheit (°F hay độ F), là một thang nhiệt độ được đặt theo tên nhà vật lý người Đức Daniel Gabriel Fahrenheit (1686–1736).) . Fahrenheit phát triển thang nhiệt độ của ông sau khi viếng thăm nhà thiên văn học người Đan Mạch Ole Rømer ở Copenhagen. Rømer đã tạo ra chiếc nhiệt kế đầu tiên mà trong đó ông sử dụng hai điểm chuẩn để phân định. Trong thang Rømer thì điểm đóng băng của nước là 7,5॰, điểm sôi là 60॰, và thân nhiệt trung bình của con người theo đó sẽ là 22,5 độ theo phép đo của Rømer.[cần dẫn nguồn]
Nhiệt Độ K
[sửa]Nhiệt độ Kelvin . Trong hệ thống đo lường quốc tế, Kelvin là một đơn vị đo lường cơ bản cho nhiệt độ. Nó được ký hiệu bằng chữ K. Mỗi K trong nhiệt giai Kelvin (1 K) bằng một độ trong nhiệt giai Celsius (1 °C) và 0 °C ứng với 273,15K. Thang nhiệt độ này được lấy theo tên của nhà vật lý, kỹ sư người Ireland William Thomson, nam tước Kelvin thứ nhất. Nhiệt độ trong nhiệt giai Kelvin đôi khi còn được gọi là nhiệt độ tuyệt đối, do 0 K ứng với nhiệt độ nhỏ nhất mà vật chất có thể đạt được. Tại 0K, trên lý thuyết, mọi chuyển động nhiệt hỗn loạn đều ngừng. Thực tế chưa quan sát được vật chất nào đạt tới chính xác 0 K; chúng luôn có nhiệt độ cao hơn 0 K một chút, tức là vẫn có chuyển động nhiệt hỗn loạn ở mức độ nhỏ. Ngay cả những trạng thái vật chất rất lạnh như ngưng tụ Bose-Einstein cũng có nhiệt độ lớn hơn 0 K. Quan sát này phù hợp với nguyên lý bất định Heisenberg; nếu vật chất ở chính xác 0 K, luôn tìm được hệ quy chiếu trong đó vận tốc chuyển động của chúng là 0 và vị trí không thay đổi, nghĩa là đo được chính xác cùng lúc vị trí và động lượng của hệ, vi phạm nguyên lý bất định. Nhiệt độ của hơi nước đang sôi là 373,15K. Hay nói cách khác định nghĩa Kelvin (K), được xây dựng từ 1967 và có hiệu lực cho đến ngày 20 tháng 5 năm 2019 [2], là 1/273,16 của nhiệt độ nhiệt động lực học của điểm ba (điểm ba thể hay điểm ba pha) của nước.
Hoán chuyển nhiệt độ
[sửa]Hoán chuyển nhiệt độ từ 3 hệ nhiệt độ trên được thực thi qua bảng hoán chuyển nhiệt độ dưới đây
Các công thức đổi nhiệt độ Đổi từ Sang Công thức Fahrenheit Celsius °C = 5/9 (F – 32) Celsius Fahrenheit °F = 9/5 C + 32 Celsius Kelvin K = C + 273,15 Kelvin Celsius °C = K - 273,15 Kelvin Fahrenheit °F= 9/5 (K – 273,15) + 32 Fahrenheit Kelvin K = 5/9 (F - 32) + 273,15
Nhiệt độ tiêu chuẩn
[sửa]Nhiệt độ ở Áp suất tiêu chuẩn
- STP - ở nhiệt độ và áp suất
Nhiệt độ tiêu chuẩn Giá trị
Nhiệt độ vật chất
Rắn - - Nhiệt độ đông đặc
Lỏng - - Nhiệt độ nung chảy.
Đặc - - Nhiệt độ đông đặc.
Khí - - Nhiệt độ bốc hơi
Nhiệt độ 0 tuyệt đối
Nhiệt độ phòng
Nhiệt và vật
[sửa]Nhiệt điện
[sửa]Quan sát cho thấy, mọi vật dẩn điện khi khi dẩn điện đều phát sinh ra nhiệt trong vật . Năng lực nhiệt phát sinh trong vật được tính như sau
Dẩn điện Công thức Điện trở
Cuộn từ Với H = 0
Với H ≠ 0Tụ điện
Nhiệt điện từ
[sửa]Nhiệt điện từ Nhiệt Nhiệt quang Nhiệt điện Lối mắc Cộng dây thẳng dẫn điện Cuộn tròn của N vòng tròn dẫn điện Cuộn tròn của N vòng tròn dẫn điện
với từ vật nằm trong các vòng quấnTần số thời gian Hằng số C
Năng lực nhiệt
Động lượng
Bước sóng Khối lượng vật Lượng tử vật chất
Nhiệt và Lửa
[sửa]Nhiệt cảm
[sửa]Quá trình nhiệt truyền qua vật tạo ra thay đổi nhiệt trên vật . Nhiệt năng của lửa làm cho vật phát sinh nhiệt trong vật được tính bằng
Nhiệt độ , Thay đổi nhiệt, Hướng nhiệt truyền Năng lực nhiệt truyền vào môi trường xung quanh, Nhiệt di chuyển từ T0 đến T1 Nhiệt di chuyển từ T1 đến T0
Năng lực lửa truyền trên vật tlàm cho vật thay đổi trạng thái vật chất - từ rắn sang đặc, từ đặc sang lỏng , từ lỏng sang khí , từ khí sang rắn . Sự biến đổi trạng thái của vật chất được được mô tả qua Phương trình trạng thái có dạng tổng quát được ô tả dưới dạng Định luật Van der Waals (1873) khí lý tưởng (1834)
Với
Nhiệt dẩn
[sửa]Quá trình năng lực nhiệt truyền qua vật đạt đến mức cao nhứt ở tần số ngưởng tạo ra năng lực nhiệt tỏa vào môi trường xung quanh phát ra ánh sáng thấy được
Với
Thí nghiệm cho thấy,
Từ trên, ta có
Nhiệt phóng xạ
[sửa]Quá trình năng lực nhiệt truyền qua vật trên mức cao nhứt ở tần số trên tần số ngưởng cùng với năng lực nhiệt tỏa vào môi trường xung quanh có khả năng giải thoát điện tử khỏi nguyên tử vật chất tạo ra phân rả vật chất
Nhiệt phóng xạ
[sửa]Điện từ
[sửa]Nhiệt điện từ Nhiệt Nhiệt quang Nhiệt điện Lối mắc Cộng dây thẳng dẫn điện Cuộn tròn của N vòng tròn dẫn điện Cuộn tròn của N vòng tròn dẫn điện
với từ vật nằm trong các vòng quấnTần số thời gian Hằng số C
Năng lực nhiệt
Động lượng
Bước sóng Khối lượng vật Lượng tử vật chất
Vật đen
[sửa]Phóng xạ vật đen là hiện tượng phóng xạ nhiệt (giải tỏa năng lượng nhiệt) của vật chất tối khi tương tác với nhiệt ở nhiệt độ cao trên nhiệt độ hấp thụ cao nhứt của vật . Planck biết rằng vật tối hấp thụ năng lượng nhiệt tốt nhứt . Planck thực hiện thí nghiệm trên vật tối và thấy rằng khi nhiệt độ tăng dần từ thấp đến cao
- Cường độ nhiệt tăng theo tần số thời gian
- Đỉnh sóng nhiệt ở bước sóng ngắn hơn
- Phát ra ánh sáng màu theo trình tự từ Trắng , Đỏ , Vàng , Tím , và Đen
Nhiệt độ Màu Cường độ nhiệt Bước sóng Lạnh Trắng Thấp Ngắn Ấm Vàng Trung Trung Nóng Đen Cao Dài
Định luật Planck miêu tả bức xạ điện từ phát ra từ vật đen trong trạng thái cân bằng nhiệt ở một nhiệt độ xác định. Định luật đặt tên theo Max Planck, nhà vật lý đã nêu ra nó vào năm 1900. Định luật này là bước đi tiên phong đầu tiên của vật lý hiện đại và cơ học lượng tử.
Đối với tần số ν, hoặc bước sóng λ, định luật Planck viết dưới dạng:
hoặc
Với
- B ký hiệu của cường độ bức xạ (spectral radiance),
- T là nhiệt độ tuyệt đối, kB là hằng số Boltzmann,
- h là hằng số Planck, và c là tốc độ ánh sáng trong môi trường hoặc trong chân không.[1][2][3] Đơn vị SI của phương trình là W·sr−1·m−2·Hz−1 đối với Bν(T) và W·sr−1·m−3 đối với Bλ(T).
Định luật này cũng có thể biểu diễn theo cách khác, như số lượng photon phát ra tại một bước sóng xác định, hoặc mật độ năng lượng trong thể tích chứa bức xạ. Trong giới hạn đối với những tần số nhỏ (hay bước sóng dài), định luật Planck tương đương với định luật Rayleigh–Jeans, trong khi đối với những tần số lớn (bước sóng nhỏ) định luật này tương đương với xấp xỉ Wien hoặc định luật dịch chuyển Wien.
Max Planck đưa ra định luật vào năm 1900, với mục đích ban đầu để đo các hằng số bằng thực nghiệm, và sau đó ông chứng minh rằng, như định luật biểu diễn sự phân bố năng lượng, nó miêu tả duy nhất sự phân bố ổn định của bức xạ trong trạng thái cân bằng nhiệt.[4] Là định luật về sự phân bố năng lượng, nó là một trong các định luật về phân bố cân bằng nhiệt mà bao gồm phân bố Bose–Einstein, phân bố Fermi–Dirac và phân bố Maxwell–Boltzmann.
- Định luật dịch chuyển Wien
- Đường cong bức xạ của vật đen đối với các nhiệt độ khác nhau sẽ đạt cực đại ở các bước sóng khác nhau tỷ lệ nghịch với nhiệt độ
Định luật dịch chuyển của Wien phát biểu rằng bức xạ quang phổ của bức xạ vật đen trên mỗi bước sóng đơn vị, cực đại ở bước sóng λ max được cho bởi:
Trong đó
- T là nhiệt độ tuyệt đối đo bằng kelvin.
- b là hằng số tỷ lệ được gọi là hằng số dịch chuyển Wien, bằng 2897771955...×10−3 m⋅K,[1] hoặc để thu được bước sóng tính bằng micromet, b ≈ 2898 μm⋅K
Sự dịch chuyển của giá trị cực đại đó là hệ quả trực tiếp của định luật bức xạ Planck, mô tả độ sáng của phổ của bức xạ vật đen là một hàm của bước sóng ở bất kỳ nhiệt độ nào. Tuy nhiên, Wilhelm Wien đã tìm ra định luật này vài năm trước khi Max Planck phát triển phương trình tổng quát hơn, và mô tả toàn bộ sự dịch chuyển của phổ bức xạ vật đen sang bước sóng ngắn hơn khi nhiệt độ tăng.
Nếu đang xem xét mức phát xạ cơ thể đen trên mỗi tần số đơn vị hoặc trên mỗi băng thông tỷ lệ, thì phải sử dụng hằng số tỷ lệ khác nhau. Tuy nhiên, hình thức của định luật này vẫn giống nhau: bước sóng cực đại tỷ lệ nghịch với nhiệt độ và tần số cực đại tỷ lệ thuận với nhiệt độ.
- Định luật Stefan–Boltzmann
- Mô tả năng lượng bức xạ từ một vật đen tương ứng nhiệt độ cho trước
- Tổng năng lượng bức xạ trên một đơn vị diện tích bề mặt của một vật đen qua tất cả các bước sóng trong một đơn vị thời gian, , tỷ lệ thuận với lũy thừa bậc 4 của nhiệt độ nhiệt động của vật thể T:
Với
- Hệ số tỉ lệ σ, được gọi là hằng số Stefan-Boltzmann, nhận được từ những hằng số tự nhiên khác. Giá trị của nó là . Trong đó k là hằng số Boltzmann, h là hằng số Planck, và c là vận tốc ánh sáng trong chân không. Như vậy, tại 100°K thông lượng năng lượng là 5,67 W/m2, tại 1000°K là 56700 W/m2, v.v.
Bức xạ (oát trên mét vuông trên góc khối), được cho bởi công thức:
Vật thể mà không hấp thụ tất cả những bức xạ tới (còn được biết với tên vật xám) phát ra năng lượng tổng cộng ít hơn vật đen và được đặc trưng bởi độ phát xạ, emissivity, :
Độ rọi bức xạ (khả năng bức xạ), , có thứ nguyên của thông lượng năng lượng (năng lượng trên một đơn vị thời gian trên một đơn vị diên tích), và trong hệ đo lường SI là joule trên giây trên mét vuông, hoặc tương đương là oát trên mét vuông. Đơn vị SI của nhiệt độ tuyệt đối T là Kelvin, là độ phát xạ của vật xám, nếu nó là vật đen tuyệt đối thì . Trong trường hợp tổng quát hơn (thực tế), độ hấp thụ phụ thuộc vào bước sóng .
Để tìm tổng công suất phát ra từ một vật thể, ta nhân với diện tích bề mặt của nó, :
Những hạt có kích cỡ bước sóng hoặc một phần bước sóng,[1] siêu vật liệu,[2] và những cấu trúc nano khác không chịu giới hạn tia quang học và có thể là được thiết kế để mở rộng định luật Stefan-Boltzmann.
Nguyên tố vật chất
[sửa]- Ur -- > Th ~ α
- C --> N ~ β
- e --> e ` ψ
Nhiệt phân rả
[sửa]- Ur --> Th + X
- C --> N + Y
Nhiệt động học
[sửa]Các định luật của nhiệt động lực học còn được gọi là các nguyên lý nhiệt động lực học.
Định luật Phát biểu Ý nghỉa Định luật 0 Nếu hai hệ có cân bằng nhiệt động với cùng một hệ thứ ba thì chúng cũng cân bằng nhiệt động với nhau Nguyên lý cân bằng nhiệt động, nói về cân bằng nhiệt động. Hai hệ nhiệt động đang nằm trong cân bằng nhiệt động với nhau khi chúng được cho tiếp xúc với nhau nhưng không có trao đổi năng lượng. Định luật 1 Độ biến thiên nội năng của hệ bằng tổng công và nhiệt lượng mà hệ nhận được ΔU = A + Q . Trong trường hợp này, chúng ta có thể quy định về dấu của A và Q để biết hệ đang nhận hay thực hiện công, nhận hay truyền nhiệt lượng. Ví dụ:
Q > 0: Hệ nhận nhiệt lượng
Q < 0: Hệ truyền nhiệt lượng
A > 0: Hệ nhận công
A < 0: Hệ thực hiện công
chính là định luật bảo toàn năng lượng áp dụng vào hiện tượng nhiệt, khẳng định rằng năng lượng luôn được bảo toàn. Nói cách khác, tổng năng lượng của một hệ kín là không đổi. Các sự kiện xảy ra trong hệ chẳng qua là sự chuyển năng lượng từ dạng này sang dạng khác. Như vậy năng lượng không tự sinh ra và không tự mất đi, nó luôn biến đổi trong tự nhiên. Trong toàn vũ trụ, tổng năng lượng không đổi, nó chỉ có thể chuyển từ hệ này sang hệ khác.Định luật 2 Một hệ lớn và không trao đổi năng lượng với môi trường sẽ có entropy luôn tăng hoặc không đổi theo thời gian . Entropy của một hệ kín chỉ có hai khả năng, hoặc là tăng lên, hoặc giữ nguyên Nguyên lý về entropy, liên quan đến tính không thể đảo ngược của một quá trình nhiệt động lực học và đề ra khái niệm entropy. Từ đó dẫn đến định luật là không thể chuyển từ trạng thái mất trật tự sang trạng thái trật tự nếu không có sự can thiệp từ bên ngoài.
Vì entropy là mức độ hỗn loạn của hệ, định luật này nói rằng vũ trụ sẽ ngày càng "hỗn loạn" hơn. Cơ học thống kê đã chứng minh rằng định luật này là một định lý, đúng cho hệ lớn và trong thời gian dài. Đối với hệ nhỏ và thời gian ngắn, có thể có thay đổi ngẫu nhiên không tuân thủ định luật này. Nói cách khác, không như định luật 1, các định luật vật lý chi phối thế giới vi mô chỉ tuân theo định luật 2 một cách gián tiếp và có tính thống kê. Ngược lại, định luật 2 khá độc lập so với các tính chất của các định luật đó, bởi lẽ nó chỉ thể hiện khi người ta trình bày các định luật đó một cách giản lược hóa và ở quy mô nhỏ.Định luật 3 Trạng thái của mọi hệ không thay đổi tại nhiệt độ không tuyệt đối (0K) Nguyên lý Nernst còn được gọi là nguyên lý độ không tuyệt đối, đã từng được bàn cãi nhiều nhất, gắn liền với sự tụt xuống một trạng thái lượng tử cơ bản khi nhiệt độ của một hệ tiến đến giới hạn của độ không tuyệt đối.