Các hàm nghịch đảo có thể được ký hiệu là sin−1 hay cos−1 thay cho arcsin và arccos. Việc dùng ký hiệu mũ có thể gây nhầm lẫn với hàm mũ của hàm lượng giác.
Các hàm lượng giác nghịch đảo cũng có thể được định nghĩa bằng chuỗi vô hạn:
arcsin
z
=
z
+
(
1
2
)
z
3
3
+
(
1
⋅
3
2
⋅
4
)
z
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
7
7
+
⋯
=
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
2
n
+
1
(
2
n
+
1
)
|
z
|
<
1
{\displaystyle {\begin{matrix}\arcsin z&=&z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{2n+1}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|<1}
arccos
z
=
π
2
−
arcsin
z
=
π
2
−
(
z
+
(
1
2
)
z
3
3
+
(
1
⋅
3
2
⋅
4
)
z
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
2
n
+
1
(
2
n
+
1
)
|
z
|
<
1
{\displaystyle {\begin{matrix}\arccos z&=&{\frac {\pi }{2}}-\arcsin z\\&=&{\frac {\pi }{2}}-(z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{2n+1}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|<1}
arctan
z
=
z
−
z
3
3
+
z
5
5
−
z
7
7
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
z
2
n
+
1
2
n
+
1
|
z
|
<
1
{\displaystyle {\begin{matrix}\arctan z&=&z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}}\end{matrix}}\,\quad \left|z\right|<1}
arccsc
z
=
arcsin
(
z
−
1
)
=
z
−
1
+
(
1
2
)
z
−
3
3
+
(
1
⋅
3
2
⋅
4
)
z
−
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
−
7
7
+
⋯
=
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
−
(
2
n
+
1
)
2
n
+
1
|
z
|
>
1
{\displaystyle {\begin{matrix}\operatorname {arccsc} z&=&\arcsin \left(z^{-1}\right)\\&=&z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \\&=&\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{-(2n+1)}}{2n+1}}\end{matrix}}\,\quad \left|z\right|>1}
arcsec
z
=
arccos
(
z
−
1
)
=
π
2
−
(
z
−
1
+
(
1
2
)
z
−
3
3
+
(
1
⋅
3
2
⋅
4
)
z
−
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
z
−
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
(
2
n
)
!
2
2
n
(
n
!
)
2
)
z
−
(
2
n
+
1
)
(
2
n
+
1
)
|
z
|
>
1
{\displaystyle {\begin{matrix}\operatorname {arcsec} z&=&\arccos \left(z^{-1}\right)\\&=&{\frac {\pi }{2}}-(z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {z^{-(2n+1)}}{(2n+1)}}\end{matrix}}\,\quad \left|z\right|>1}
arccot
z
=
π
2
−
arctan
z
=
π
2
−
(
z
−
z
3
3
+
z
5
5
−
z
7
7
+
⋯
)
=
π
2
−
∑
n
=
0
∞
(
−
1
)
n
z
2
n
+
1
2
n
+
1
|
z
|
<
1
{\displaystyle {\begin{matrix}\operatorname {arccot} z&=&{\frac {\pi }{2}}-\arctan z\\&=&{\frac {\pi }{2}}-(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots )\\&=&{\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}}\end{matrix}}\,\quad \left|z\right|<1}
Chúng cũng có thể được định nghĩa thông qua các biểu thức sau, dựa vào tính chất chúng là đạo hàm của các hàm khác.
arcsin
(
x
)
=
∫
0
x
1
1
−
z
2
d
z
,
|
x
|
<
1
{\displaystyle \arcsin \left(x\right)=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,\mathrm {d} z,\quad |x|<1}
arccos
(
x
)
=
∫
x
1
1
1
−
z
2
d
z
,
|
x
|
<
1
{\displaystyle \arccos \left(x\right)=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,\mathrm {d} z,\quad |x|<1}
arctan
(
x
)
=
∫
0
x
1
1
+
z
2
d
z
,
∀
x
∈
R
{\displaystyle \arctan \left(x\right)=\int _{0}^{x}{\frac {1}{1+z^{2}}}\,\mathrm {d} z,\quad \forall x\in \mathbb {R} }
arccot
(
x
)
=
∫
x
∞
1
z
2
+
1
d
z
,
z
>
0
{\displaystyle \operatorname {arccot} \left(x\right)=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,\mathrm {d} z,\quad z>0}
arcsec
(
x
)
=
∫
x
1
1
|
z
|
z
2
−
1
d
z
,
x
>
1
{\displaystyle \operatorname {arcsec} \left(x\right)=\int _{x}^{1}{\frac {1}{|z|{\sqrt {z^{2}-1}}}}\,\mathrm {d} z,\quad x>1}
arccsc
(
x
)
=
∫
x
∞
−
1
|
z
|
z
2
−
1
d
z
,
x
>
1
{\displaystyle \operatorname {arccsc} \left(x\right)=\int _{x}^{\infty }{\frac {-1}{|z|{\sqrt {z^{2}-1}}}}\,\mathrm {d} z,\quad x>1}
Công thức trên cho phép mở rộng hàm lượng giác nghịch đảo ra cho các biến số phức|phức:
arcsin
(
z
)
=
−
i
log
(
i
(
z
+
1
−
z
2
)
)
{\displaystyle \arcsin(z)=-i\log \left(i\left(z+{\sqrt {1-z^{2}}}\right)\right)}
arccos
(
z
)
=
−
i
log
(
z
+
z
2
−
1
)
{\displaystyle \arccos(z)=-i\log \left(z+{\sqrt {z^{2}-1}}\right)}
arctan
(
z
)
=
i
2
log
(
1
−
i
z
1
+
i
z
)
{\displaystyle \arctan(z)={\frac {i}{2}}\log \left({\frac {1-iz}{1+iz}}\right)}