Bước tới nội dung

Sách toán/Phương trình đại số

Tủ sách mở Wikibooks


Phương trình là một đẳng thức của một hàm số toán của 1 hay nhiều hơn một biến số có giá trị bằng không

Với

x - Nghiệm số , mọi giá trị của x thỏa mản phương trình

Thí dụ

[sửa]

Giải phương trình đại số

[sửa]

Giải phương trình là cách thức tìm giá trị của biến số sao cho hàm số của biến số có giá trị bằng không . Giá trị của biến số thỏa mản điều kiện f(x)=0 được gọi là nghiệm số của phương trình


Giải phương trình tìm nghiệm số x thỏa mản phương trình

Giải phương trình đường thẳng

[sửa]

Dạng tổng quát

Giải phương trình

Nghiệm số phương trình

Giải phương trình đường tròn

[sửa]

Phương trình hình tròn hệ số thực

[sửa]

Dạng tổng quát

Giải phương trình

Phương trình hình tròn hệ số phức

[sửa]

Dạng tổng quát

Giải phương trình

Giải phương trình lũy thừa

[sửa]
Phương trình lũy thừa Dạng tổng quát Giải phương trình Đô thị
Phương trình lũy thừa bậc 1
Giải phương trình lũy thừa bậc 2

.
.
.







Giải phương trình lũy thừa bậc n

Giải phương trình tuyến tính

[sửa]

Phương trình tuyến tính có dạng tổng quát

Giải hệ phương trình tuyến tính trực tiếp
[sửa]

Với hệ phương trình đường thẳng co dạng tổng quát


Chia phương trình 1 cho a và phương trình 2 cho d, ta được

Trừ 2 phương trình trên, ta được

Tìm giá trị nghiệm số y


Chia phương trình 2 cho b và phương trình 2 cho e, ta được

Trừ 2 phương trình trên, ta được

Tìm giá trị nghiệm số y


Vậy, hệ phương trình đường thẳng

Có nghiệm 2 nghiệm số

Thí dụ

Thế vào

Ta có


Giải phương trình bằng ma trận
[sửa]

có các hệ số của các ẩn tạo thành ma trận:

Tìm định thức ma trận Định thức của A

det(A)=ad-bc.


Định thức của X

det(X)=ed-bf.


Định thức của Y

det(A)=af-cd.

Tìm nghiệm số

.
.